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Abstract 

 

 I explore the concept of difference covers, as well as the related concepts of 

difference packing and sets, with the primary goal of finding smaller difference covers 

than those already known for modulo groups of order greater than 128. Using Golomb 

rulers and tree searches, I find several difference covers and compile a comprehensive list 

of the smallest covers I found for various groups. This method, although initially 

promising, did not provide the results I was hoping to find, which led me to further 

explore search methods and the patterns that arise in difference covers. A known method 

of finding solutions to NP-Hard problems, simulated annealing, ultimately led me to 

discover many difference covers I was unable to find with Golomb rulers. I applied 

different cooling schedules to the problem and had best results using simulated annealing 

with a constant thermodynamic velocity. 

 

1 Introduction 

1.1 Difference Covers 

 A difference cover D is a subset of a group G such that for all 𝑥 ∈ 𝐺, 𝑥 = 𝑖 − 𝑗 for 

some 𝑖, 𝑗 ∈ 𝐷. That is, every element in G is expressible as a difference of two elements in 

D. For example, for the modulo group under addition of order 3, Z3, the set {0, 1} would be 



a minimum difference cover. Since 0 = 0 − 0 𝑚𝑜𝑑 3 , 1 = 1 − 0 𝑚𝑜𝑑 3 and 2 = 0 −

1 𝑚𝑜𝑑 3 , the set Z3 is covered by the differences of {0, 1}. The entire set Z3 is also a 

difference cover as well as {0, 2}. 

 

Proposition 1.1  For the group modulo v, the smallest order a difference cover for that 

group can possibly have is the smallest integer n such that 𝑛(𝑛 − 1) ≥ 𝑣. 

A subset of n elements can have as many as 𝑛(𝑛 − 1) unique nonzero differences 

since each pair of elements represents two differences. In order for a subset to cover 

modulo v, there must be at least 𝑣 − 1 distinct nonzero differences since every difference 

from 1 to 𝑣 − 1 needs to be covered. If 𝑛(𝑛 − 1) < 𝑣 − 1, it is not possible for v differences 

nonzero to be covered by the subset, because the maximum number of differences is less 

than the number of difference required to cover the group. 

 

Minimum difference covers, or optimal difference covers, of G are difference covers 

whose length is the smallest possible length of a difference cover for G [2]. As of the time I 

started my research, difference covers of minimum size for modulo groups up to 128 have 

already been found by brute force searches [5]. The problem of finding minimum 

difference covers has been shown to be NP-Hard and thus more robust search methods 

are required to continue finding them for larger groups [15]. 

 Note that because modulo groups under addition are cyclic groups, {0, 1} and {0, 2} 

are effectively the same difference cover of Z3. Adding a constant to each element in a 

subset does not change the set of differences that occur in that subset. Because of this, and 

since the difference 1 always appears of covers of modulo groups, I will ignore all subsets 

of these groups that do not include {0, 1} since they are additively equivalent to those that 

do include {0, 1}. That is, an integer can be added to each element of a cover that does not 

contain {0, 1} to create a cover that does. Likewise, I will ignore covers that include 2 when 

searching the entire search space since they will be additively equivalent to a cover that 

does not contain 2. This is because as long as 2 is contained, each element can have 1 

subtracted from it as many times as it takes for 2 to no longer be contained. This works as 

long as there is an element in the set not contained by the cover, which will always be the 



case. It is also possible to multiply each element of a cover by -1 to create a cover that is 

multiplicatively equivalent. The cover {0, 1, 3} in modulo 6 for instance can be multiplied 

by -1 which gives {0, 3, 5} which can have 1 added to each element to produce {0, 1, 4}. The 

differences that appear in {0, 1, 4} must be the same as the differences that appear in {0, 1, 

3}. While I did take additive equivalence into account in my searches by assuming 0 and 1 

are included and 2 is not, I did not implement a way to remove sections of a search tree to 

avoid the redundancy of finding two covers that can be shown to be equivalent through 

multiplication. 

Table 1.1 

 An additively inequivalent list of all minimum difference covers for modulo groups 

1 through 13. 

Modulo        

1 {0}       

2 {0, 1}       

3 {0, 1}       

4 {0, 1, 3}       

5 {0, 1, 3} {0, 1, 4}      

6 {0, 1, 3} {0, 1, 4}      

7 {0, 1, 3} {0, 1, 5}      

8 {0, 1, 3, 4} {0, 1, 3, 5} {0, 1, 3, 7} {0, 1, 4, 6} {0, 1, 4, 7} {0, 1, 5, 6} {0, 1, 5, 7} 

9 {0, 1, 3, 4} {0, 1, 3, 5} {0, 1, 3, 6} {0, 1, 3, 7} {0, 1, 3, 8} {0, 1, 4, 6}  

 {0, 1, 4, 7} {0, 1, 4, 8} {0, 1, 5, 7} {0, 1, 5, 8} {0, 1, 6, 7} {0, 1, 6, 8}  

10 {0, 1, 3, 5} {0, 1, 3, 6} {0, 1, 4, 6} {0, 1, 4, 9} {0, 1, 5, 7} {0, 1, 5, 8}  

 {0, 1, 6, 8} {0, 1, 6, 9}      

11 {0, 1, 3, 7} {0, 1, 3, 5} {0, 1, 3, 8} {0, 1, 4, 6} {0, 1, 4, 9} {0, 1, 4, 10}  

 {0, 1, 7, 10} {0, 1, 5, 9} {0, 1, 6, 8} {0, 1, 7, 9}    

12 {0, 1, 3, 7} {0, 1, 4, 6} {0, 1, 6, 10} {0, 1, 7, 9}    

13 {0, 1, 5, 11} {0, 1, 4, 6} {0, 1, 8, 10} {0, 1, 3, 9}    

 

 

Colbourn and Ling (2000) used difference covers as a tool to produce systems of 

quorums and in doing so created a difference cover construction which was later used to 

find covers for large modulo that were better than those previously known. A quorum is a 

set of sites in a system of sites that communicate over a network that grant permission to 

another site to access a resource. To ensure mutual exclusion, each quorum must have at 

least one site in common with each other quorum. While the paper created a method of 



constructing more optimal systems of quorums, it was mostly cited for its use of difference 

covers. This construction builds a sequence of 6𝑟 + 3 elements from a specific sequence of 

integers that acts as a difference cover for any modulo 𝑣 ≤ 12𝑟2 + 18𝑟 + 6 [1]. This 

construction has been useful for finding covers for larger modulo, finding length 20 covers 

for modulo 256 and length 29 covers for modulo 512 [5]. These covers however are 

unlikely to be minimum and methods of finding better covers for such modulo still need 

to be found. 

Kärkkäinen et al. (2006) later utilized difference covers to create a linear time 

construction algorithm for suffix arrays. In doing so, they utilized the concept of a 

difference cover sample. They define a v-periodic sample C of [0, n] with the period D, 

where D is a difference cover modulo v, by 𝐶 = {𝑖 ∈ [0, 𝑛]|𝑖 𝑚𝑜𝑑 𝑣 ∈ 𝐷}. The members of C 

will become the indices of the suffixes used as a sample to be sorted before the rest of the 

array is sorted. The properties of difference covers happen to be useful in this case to more 

efficiently sort the remaining suffixes. This is due to the periodic nature of difference 

covers and the fact that for any indices 𝑖, 𝑗 ∈ [0, 𝑛 − 𝑣 + 1] there is an 𝑙 such that 𝑖 + 𝑙 and 

𝑗 + 𝑙 are both members of the sample [5]. While the existing applications of difference 

covers are narrow, it is likely that there will be other uses for difference covers found 

gradually in the future. 

1.2 Difference Packings 

 A difference packing P is a subset of a group G such that for all 𝑥 ∈ 𝐺 , 𝑥 = 𝑖 − 𝑗 for 

no more than one 𝑖, 𝑗 ∈ 𝐶. This is similar to a difference cover except we actually want to 

search for the largest possible packings, since we want to get as close as possible to having 

every difference covered once without repeating a difference. By their nature, difference 

packings tend to be smaller than difference covers, and are smaller on all but a few specific 

modulo. The problem of finding maximum difference packings is NP Hard as well since it 

scales in the same way finding minimum difference covers does as the order of the group 

increases. For any given group however, finding maximum packings will be faster than 

finding minimum covers using backtracking or a tree search because the same difference 

can never appear twice. Finding packings using other methods that can be applied to 

covers like simulated annealing may actually be more difficult. 



Table 1.2 

 A non-redundant concise list of maximum difference packings for modulo groups 1 

through 13. 

Modulo       

1 {0}      

2 {0}      

3 {0, 1}      

4 {0, 1}      

5 {0, 1}      

6 {0, 1}      

7 {0, 1, 3} {0, 1, 5}     

8 {0, 1, 3} {0, 1, 6}     

9 {0, 1, 3} {0, 1, 4} {0, 1, 6} {0, 1, 7}   

10 {0, 1, 3} {0, 1, 4} {0, 1, 7} {0, 1, 8}   

11 {0, 1, 3} {0, 1, 4} {0, 1, 5} {0, 1, 7} {0, 1, 8} {0, 1, 9} 

12 {0, 1, 3} {0, 1, 4} {0, 1, 5} {0, 1, 8} {0, 1, 9} {0, 1, 10} 

13 {0, 1, 5, 11} {0, 1, 4, 6} {0, 1, 8, 10} {0, 1, 3, 9}   

 

1.3 Difference Sets 

 A difference set S is a subset of group G such that for all 𝑥 ∈ 𝐺, 𝑥 = 𝑖 − 𝑗 for exactly 

λ pairs 𝑖, 𝑗 ∈ 𝐺 where 𝜆 ∈ 𝑵. Difference sets are defined by the parameters v, k and λ 

where v is the order of the group, k is the order of the subset and λ is the number of times 

each difference appears [14]. Difference sets are a much more heavily studied concept than 

covers and packings, occurring naturally in many combinatorial problems [9]. Since they 

are a similar concept to difference covers, I considered them valuable to learn about in 

order to better understand difference covers. Difference sets are much more specific in 

nature than difference covers. When searching for a difference set with a specific set of 

parameters, the order of the set is already known as well as how many times each 

difference appears. This makes tree searches markedly simpler than in the case of 

difference covers. 

 Difference sets, difference covers and difference packings overlap when every non-

identity element of G can be represented by the difference of two elements in a subset in 

exactly one way. Since a subset of length n has (𝑛 − 1)𝑛 nonzero differences, only modulo 

groups expressible as (𝑛 − 1)𝑛 + 1 for 𝑛 ∈ 𝑍 can potentially have subsets that fit this 

specific constraint.  Not all such groups will contain such a subset, although it has been 



proven that these sets will exist for certain modulo that fit this description as will be 

explained later. 

 The search methods I find for difference covers should be applicable to difference 

sets as well. Perhaps a tree search for a difference set would ignore nodes with too many 

repetitions of any difference and value nodes based on proximity to the correct set of 

differences. Simulated annealing methods, which I later cover, would be similarly 

applicable. 

1.4 Golomb Ruler 

 A Golomb ruler is a set of nonnegative integers such that no two pairs are the same 

distance apart. Golomb rulers by convention include 0 since the smallest value can 

otherwise be subtracted from each element. The order of a Golomb ruler is the number of 

elements in the ruler and the length is the value of the largest element. The applications of 

Golomb rulers vary widely and include error correcting codes, radio frequency selection, 

radio antenna placement and current transformers [10, 11, 12]. 

Golomb rulers are conveniently similar in nature to difference packings, since they 

consist of integers that lack repeated differences. In fact, any Golomb ruler of length L is 

by definition a difference packing for modulo groups of order 2L and greater. While 

finding shortest length Golomb rulers is an NP-hard problem, all such rulers have already 

been found up to order 27. These rulers are very similar in nature to difference packings 

since no difference repeats and in theory, minimum difference covers may contain 

nontrivial Golomb rulers, thus leading to the idea that rulers may be helpful in finding 

minimum difference covers. I explore the potential of these Golomb rulers to be used as 

starting points in searches for minimum length difference covers of modulo groups large 

enough such that the rulers will function as difference packings, which usually means the 

modulo is at least twice the length of the ruler. 

Suboptimal Golomb rulers could theoretically also be useful but the higher length 

to order ratios means they are only applicable to larger modulo groups at the same order, 

which means having a smaller base to start with for any given modulo group. There are 

fast construction methods to produce Golomb rulers but they produce rulers so large they 

will not be useful for this purpose. Because of this, I have stuck to using the optimal 



Golomb rulers. 

Table 1.3 

 A comprehensive list of optimal Golomb rulers up to order 15 as listed on the IBM 

website [14]. 

Order Length Marks 

1 0 {0} 

2 1 {0, 1} 

3 3 {0, 1, 3} 

4 6 {0, 1, 4, 6} 

5 11 {0, 1, 4, 9, 11} 

5 11 {0,2, 7, 8, 11} 

6 17 {0, 1, 4,10, 12, 17} 

6 17 {0, 1, 4, 10, 15, 17} 

6 17 {0, 1, 8, 11, 13, 17} 

6 17 {0, 1, 8, 12, 14, 17} 

7 25 {0, 1, 4, 10, 18, 23, 25} 

7 25 {0, 1, 7, 11, 20, 23, 25} 

7 25 {0, 1, 11, 16, 19, 23, 25} 

7 25 {0, 2, 3, 10, 16, 21, 25} 

7 25 {0, 2, 7, 13, 21, 22, 25} 

8 34 {0, 1, 4, 9, 15, 22, 32, 34} 

9 44 {0, 1, 5, 12, 25, 27, 35, 41, 44} 

10 55 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 

11 72 {0, 1, 4, 13, 28, 33, 47, 54, 64, 70, 72} 

11 72 {0, 1, 9, 19, 24, 31, 52, 56, 58, 69, 72} 

12 85 {0, 2, 6, 24, 29, 40, 43, 55, 68, 75, 76, 85} 

13 106 {0, 2, 5, 25, 37, 43, 59, 70, 85, 89, 98, 99, 106} 

14 127 {0, 4, 6, 20, 35, 52, 59, 77, 78, 86, 89, 99, 122, 127} 

15 151 {0, 4, 20, 30, 57, 59, 76, 100, 111, 123, 136, 144, 145, 151} 

 

 

2 Search Techniques 

2.1 Tree Searches 

 Tree searches, such as depth first and Monte Carlo, are a simple and effective way 

to search for minimum difference covers. Each node in the tree search represents a subset 

of the given modulo group with the root being {0, 1} and each node having a child for each 

element that can be added. These nodes can be assigned a value based on how many 

differences are repeated, where the nodes with less repeated differences are more 

promising. If the size of the cover being searched for is known, then we know how many 

repeated differences the cover will have, thus we can remove all nodes from our search 



that reach a point of having too many differences repeated to possibly have the cover we 

want among its descendants. The tree is constructed during the search, starting with the 

node and repeatedly choosing a node that has not already been chosen to add their 

children to the search. Nodes corresponding to order 𝑠 − 1 subsets can be quickly checked 

to see if a cover of length s can be constructed from them and then they are removed from 

the tree. Nodes whose children have been removed can also be removed, so that 

eventually there will be no remaining tree to search. 

 In depth first tree searches, only the highest length nodes are considered when 

deciding which node’s children to look at next. In a Monte Carlo tree search however, 

every node in the tree has to be considered. Because of this, nodes are valued based on 

both how few differences are repeated and how many elements their subset contains. If 

the value of increased length is high enough, a depth first search is effectively being 

conducted and if it is low enough, the search will be nearly equivalent to a breadth first 

search. Because the breadth of these trees is too great to search, the increase in value with 

each additional element must be sufficient to quickly reach higher depth nodes. 

 The tree can also be simplified to eliminate duplicate nodes. To do this, a node’s 

children will contain each element in that node as well as an element that is larger than 

any element in the parent node. This way, you are only adding elements to the cover in 

ascending order, so that, for instance, the subsets {0, 1, 3, 5} and {0, 1, 5, 3} do not both 

appear in the tree. This creates a lopsided tree since {0, 1, 3} has a large number of 

descendants while {0, 1, n – 1} has no children at all. If the tree is going to be broken up 

into sub trees for multiple threads to search, this imbalance should be taken into account. 

 A more sophisticated version of this which I have found much more useful is to first 

sort the children of a node, then when traversing into any of their subtrees to eliminate 

elements from their children that were added by their previous sibling. For instance, we 

generate the children for {0, 1, 5} then sort those children in descending order of how 

promising they seem to be. If for instance {0, 1, 26}, {0, 1, 24} and {0, 1, 23} are the first three 

children, respectively, we would avoid children of {0, 1, 24} containing 26 and children of 

{0, 1, 23} containing 26 or 24. This creates the same effect of a skewed tree but one that is 

skewed in a way specifically designed to produce faster results. 



 Golomb rulers can be easily applied to tree searches. Instead of the root node being 

{0, 1}, it would be a specific Golomb ruler. In this way, only a tiny subset of the entire tree 

is actually searched. We generally only need to find at least one of the difference covers 

each modulo contains so this will work as long as there is a single difference cover in this 

subset of the tree. The number of nodes in a tree for modulo v is 2𝑣−3 since we are 

counting the subsets of {3, 4, ..., v – 1}. The number of nodes in a tree that starts with a 

Golomb ruler length G is (𝑣 − 𝐺)! so for 𝐺 > 3, this reduces the search space by a factor of 

nearly 𝑣(𝐺 − 3). 

2.2 Backtracking 

 Backtracking is an algorithm used to find solutions to certain NP-Hard problems. 

The idea, in the case of difference covers or packings, would be to start with a small set, 

perhaps {0, 1} and recursively add elements. The algorithm backtracks when it is headed 

down a path that looks like it will not produce results and does not search that space 

again. It is similar in nature to tree searches in that it searches through every possible 

solution. It is in essence a more generalized version of a depth first tree search. The key 

difference being that you backtrack faster when it becomes apparent that a solution is 

unlikely to be found. 

 Ruskey and Sawada (1999) applied a backtracking algorithm that had been 

designed to find k-aray necklaces to generate difference covers. K-aray necklaces of length 

n are equivalence classes of strings of length n over an alphabet of k characters in which 

rotations are considered equivalent. They generate fixed-density necklaces of length n over 

an alphabet of size k where the position of each element of the necklace corresponds to a 

number in a difference cover of modulo k. The runtime complexity of their algorithm is 

𝑂((𝑛−1
𝑘−1

)) for k order covers in modulo n. This algorithm found them minimal covers as 

large as modulo 131 [9]. This algorithm appears to be a marginally more effective and 

much more in-depth version of more naïve algorithms I have applied. 

2.3 Direct Products 

 The direct product of two Groups, G and H 𝐺 × 𝐻 is defined such that every 

element of 𝐺 × 𝐻 is an ordered pair (g, h) such that 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. The operation of the 

group is defined as (𝑔1, ℎ1) · (𝑔2, ℎ2)  =   (𝑔1 · 𝑔2, ℎ1 · ℎ2) for 𝑔1, 𝑔2 ∈ 𝐺 and ℎ1, ℎ2 ∈ 𝐻. The 



direct product of two modulo groups with relative prime orders n and m is isomorphic to 

modulo 𝑚 ∗ 𝑛. The elements of these group map such that 0 maps to {0, 0}, 1 maps to {1, 1}, 

etc. If the two modulo are relatively prime, repeatedly adding {1, 1} will cycle through 

every possible combination of elements in the two modulo groups. If the two modulo are 

not relatively prime however, this does not work since repeatedly adding {1, 1} does not 

cycle through each possible combination of elements. I explored whether this could be 

used to find any patterns in difference covers that were not otherwise apparent and 

whether I could use known difference covers from the modulo being multiplied together 

to, in any way, get to a minimal cover in the larger group faster. 

 

3 Computing 

3.1 System Used 

 My implementations for this thesis were done entirely using Java. Every difference 

cover and packing I found was found using my personal computer. I am using a 64-bit 

Windows 8 machine with 8 GB of RAM and an Intel Core i5-4210U Processor. 

3.2 Simulated Annealing 

Simulated annealing was another search method I explored because it provides a 

promising way to explore the search space stochastically. This method is an analogy to 

statistical mechanics in which total entropy production is minimized while reaching the 

lowest energy state. Simulated annealing is generally applied to NP-Hard combinatorial 

problems that want minimum or maximum values of a function with many variables, i.e. a 

high dimensional space that can be searched [7]. 

The idea is to begin with a specific modulo v and a cover length s. This represents 

the state of our analogical system. An order s subset of modulo v that is relatively close to 

a difference cover to be easily generated by gradually adding elements to {0, 1} while 

avoiding too many repetitions in differences. An initial temperate T0 is then set. The subset 

repeatedly has one of its elements, other than 0 or 1, changed, effectively moving to a 

neighbor in an (s-2)-dimensional search space. The temperature determines the tendency 

of the current subset to move towards a higher energy state, with a larger temperature 



corresponding to a higher willingness to move to a higher energy state. The energy of a 

state can simply be determined for this problem by the number of differences that are not 

covered. The temperature gradually decreasing over time, making the movement of the 

state increasingly stable and ultimately making it unable to move out of a local minimum. 

Once the temperature reaches a temperature so low that the state can no longer escape 

from a local minimum that is not a difference cover, i.e. energy greater than zero, the 

temperature needs to be reset so that the process can be repeated [7]. 

 The cooling schedule is crucial to the probability of ending up in a global minimum 

and the amount of time required to get there. The two simplest and commonly used 

cooling strategies are linear and exponential cooling, defined by 𝑇(𝑡) = 𝑇0𝛼𝑡 and 𝑇(𝑡) =

𝑇0 − 𝑛𝑡 respectively. These are simply schedules with the idea of gradually subtracting a 

small constant from the current temperature or repeatedly multiplying the temperature by 

some number close to and less than 1. Another theoretically important cooling schedule is 

𝑇(𝑡) =
𝑐

log (𝑡+𝑑)
 where d is usually 1 and c is greater than or equal to the maximum value of 

𝑑𝐸

𝑑𝑡
. This logarithmic cooling strategy has been proven to inevitably lead to the global 

maximum but the cooling is slow enough to render the method impractical. Linear and 

exponential were the first two cooling methods I tried because of their simplicity. I did not 

try logarithmic cooling because it is known to be generally useless in practice [7]. 

I also tried using a cooling method with a constant thermodynamic speed where the 

cooling rate is defined by 
𝑑𝑇

𝑑𝑡
=

−𝑣𝑇

𝜀√𝐶
 where v is the constant thermodynamic speed, ε is the 

relaxation time and C is the heat capacity. ε and C are both functions that depend on the 

way the energy of the system changes over time, thus the temperature at any given time 

cannot be computed ahead of time like it can be with the previous cooling methods I used. 

This provides a dynamic cooling method that adapts to the way the state changes over 

time [7]. 

 Salamon et. al. (1988) demonstrated experimentally that constant thermodynamic 

speed works better than naive cooling schedules. To do this, they used to problem of 

placing 3,000 circuit elements on each of two chips while minimizing the number of wires 

connecting the chips. This was chosen because it is a difficult problem that demands a 



robust cooling schedule and also has real applications. The effectiveness of cooling 

schedules was measured by the mean energy levels at large numbers of run steps. This 

cooling schedule was shown to perform better than 
𝑑𝑇

𝑑𝑡
=

𝑟

𝜀
, 

𝑑𝑇

𝑑𝑡
= 𝑟𝑇2, 

𝑑𝑇

𝑑𝑡
= 𝑟𝑇, 𝑇 =

2

log (1+𝑘)
 , 

𝑇 = 0 and 
𝑑𝑇

𝑑𝑡
= 𝑟. While the cooling schedule defined by 

𝑑𝑇

𝑑𝑡
=

−𝑣𝑇

𝜀√𝐶
 did perform as well as 

any other schedule, it performed no better than 
𝑑𝑇

𝑑𝑡
=

−𝑣𝑇

𝜀𝐶
 and 

𝑑𝑇

𝑑𝑡
=

−𝑣𝑇

𝜀𝐶0.3, indicating that the 

exponent of C has minimal impact on performance. Because of this, I used 
𝑑𝑇

𝑑𝑡
=

−𝑣𝑇

𝜀𝐶
 for the 

sake of speeding up the computation [4]. 

 The heat capacity of the system, C, can be obtained from 𝐶 =
𝑑𝐸

𝑑𝑇
=

𝜎2(𝑒)

𝑇2
 where σ(𝑒) 

is the variance in energy [4]. This variance in energy can be calculated exactly by 

determining the energy for every possible order s subset of modulo v and solving 𝜎2(𝐸) =

∑
𝑠!(𝑣−𝑠)!(𝐸𝑖−𝐸)2

𝑣!
 which would take 𝑂(

𝑣!

𝑠!(𝑣−𝑠)!
) time. Since this is not an option, I can roughly 

estimate the value instead. The energy of any given subset of modulo v with s elements 

will vary from a minimum of 0, where the subset is a difference cover, to a maximum of 

𝑣

2
− 𝑠 + 1 where differences repeat as much as possible. Whenever a single element is 

changed, the energy can change by as much as 𝑠 − 1, since the element being changed can 

be responsible for anywhere from 0 to 𝑠 − 1 differences that are not otherwise covered. 

The rate of energy change does not depend on the current energy since a single change in 

one element causes as much change in a cover as it does in the highest energy state. I 

expect the average value of 
𝑑𝐸

𝑑𝑡
 to be the same regardless of whether E was equal to 0 or 

𝑣

2
−

𝑠 + 1. Thus, 
𝑑𝐸

𝑑𝑡
 is roughly proportional to s. 

𝑑𝐸

𝑑𝑡
 can be estimated by 

−(𝑠−1)

2
 when a subset is 

being mutated randomly. 𝜎(𝐸) measures the typical differences between energy values, 

thus should be roughly proportional to 
𝑑𝐸

𝑑𝑡
. Since this is my closest estimate of 𝜎(𝐸), a value 

which can not be easily calculated, it is the one I will use. This gives us a heat capacity of 

𝐶 =
(𝑠−1)2

4𝑇2 . 

 To find the relaxation time, Salamon et. al. (1988) used the model 
𝑑𝐸

𝑑𝑡
=

−1

𝜀
(𝐸 − 𝐸𝑒𝑞) 

where 𝐸𝑒𝑞 is the equilibrium energy, which in this case is zero since the equilibrium is a 

difference cover. This gives us 𝜀 =
−𝐸

𝑑𝐸
𝑑𝑡⁄

=
2𝐸

𝑠−1
. Substituting into our cooling model, 

𝑑𝑇

𝑑𝑡
=



−𝑣𝑇

𝜀𝐶
=

−𝑣𝑇∗4𝑇2∗(𝑠−1)

(𝑠−1)2∗2𝐸
=

−2𝑣𝑇3

𝐸(𝑠−1)
. This model gives us a rate of cooling that is proportional to the 

cube of the current temperature and inversely proportional to the current energy. This 

implies the temperature is going to decrease much more rapidly than it was with other 

cooling schedules at high temperature values. It also means that when we are closer to 

equilibrium, temperature drops faster, keeping the system from moving far from the 

global minimum state. This model is merely a rough estimate of the thermodynamic 

cooling equation since I could not calculate the values of the relaxation time and heat 

capacity and used trial and error to determine the best constant to use for thermodynamic 

velocity. I expect that there is a better model for this problem out there, but this one should 

be close enough to get results. Luckily, there is a great deal of leeway afforded to me since 

modifications to the equation such as changing the exponent of the heat capacity have 

negligible impact on performance. 

 Simulated annealing can also be implemented in a way such that, when the order of 

the subset we are looking for is not known, we can increase and decrease the number of 

elements with each mutation. Having additional elements in the subset would correspond 

to an increase in energy. A minimum order for the subset can be defined by the 

mathematically smallest possible order or the smallest order we believe a solution to be 

able to have. The advantage of this is that when the algorithm fails to find a cover at a 

specified minimum length, it can find one larger than that instead. While this method can 

be useful, I have found it more advantageous to constrain the search space to a specific 

order and increment the order manually after the algorithm runs for hours without 

finding a cover. This is largely because I want to be confident that I am not going to find a 

cover of a specific order before I accept a cover of a larger order as my result. Another 

reason to avoid this approach is the tremendous increase in search space as each order s in 

modulo v has a search space of ( 𝑣
𝑠−2

) elements. 

 In the code sample below, I have an acceptance probability function that gives us a 

probability of 1 to transition to a lower energy state and a probability of 𝑒
−∆𝐸

𝑇⁄  to move to 

a higher energy state. To determine the energy of a state, I determine the number of 

uncovered differences and finish as soon as a state of energy zero is found. The way 



temperature is adjusted is dependent on which cooling method is currently being used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public void anneal(){ 

 temp = MAX_TEMP; 

 List<Integer> solution = generateRandomCover(); 

 List<Integer> solutionP = new ArrayList<Integer>(); 

   

 while(true){ 

  while(temp > MIN_TEMP){ 

   solutionP = mutate(solution); 

   if (acceptanceProb(energy(solution), energy(solutionP), temp) > rand.nextFloat()) 

solution = solutionP; 

   tempAdjust(); 

  } 

  temp = MAX_TEMP; 

 } 

} 

 

public double acceptanceProb(int eOld, int eNew, double temp){ 

 if(eNew <= eOld) return 1.0; 

 return Math.pow(Math.E, (-1 * (eNew - eOld)) / temp); 

} 

 

public int energy(List<Integer> subset){ 

 int e = HALF_MOD - countDifsCovered(subset); 

 if (e == 0){ // It's a difference cover! 

  System.out.println(subset); 

  System.exit(0); 

 } 

 return e; 

} 



4 Results 

4.1 Golomb Ruler to Difference Cover 

 The use of Golomb rulers as starting points in searches for minimum difference 

covers worked to a lesser extent than Ling predicted but still produced a large amount of 

results. I was able to find a minimum cover for modulo 113 by brute force searches alone 

but requiring about a day of searching to do so, thus I began using difference covers at 

modulo 114 instead. The length 10 optimal ruler, {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} proved to 

be exceptionally effective, finding minimum difference covers for most modulo groups of 

order 114 to 140. For certain modulo however, this ruler failed to find a difference cover 

and I had to gradually try using smaller covers until finding ones that worked. The table 

below details my results up to modulo 142. 

Table 4.1 

 Difference covers obtained from optimal Golomb rulers. 

Modulo Golomb Ruler Order Minimum Cover 

114 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 76, 91, 92} 

115 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 48, 53, 55, 79, 99} 

116 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 80, 91, 113} 

117 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 89, 101, 114} 

118 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 61, 82, 105} 

119 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 81, 83, 69} 

120 {0, 1, 4, 9, 15, 22, 32, 34} 8 {0, 1, 4, 9, 15, 22, 32, 34, 45, 58, 74, 82, 109} 

121 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 83, 85, 97} 

122 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 84, 86, 57} 

123 {0, 1, 4, 9, 15, 22, 32, 34} 8 {0, 1, 4, 9, 15, 22, 32, 34, 87, 63, 89, 43, 16} 

124 {0, 1, 11, 16, 19, 23, 25} 7 {0, 1, 11, 16, 19, 23, 25, 76, 55, 97, 56, 114, 63} 

125 {0, 1, 11, 16, 19, 23, 25} 7 {0, 1, 11, 16, 19, 23, 25, 77, 57, 97, 36, 66, 99} 

126 {0, 1, 11, 16, 19, 23, 25} 7 {0, 1, 11, 16, 19, 23, 25, 79, 53, 96, 92, 52, 117} 

127 {0, 1, 8, 12, 14, 17} 6 {0, 1, 8, 12, 14, 17, 69, 42, 106, 88, 62, 32, 92} 

128 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 90, 91, 92} 

129 {0, 1, 5, 12, 20, 30, 44, 57, 66} 9 {0, 1, 5, 12, 20, 30, 44, 57, 66, 60, 108, 91, 106} 

130 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 94, 73, 66} 

131 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 92, 93, 97} 

132 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 99, 72, 118} 

133 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 32, 42, 44, 48, 51, 59, 72, 77, 97, 111} 

134 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 97, 98, 73} 

135 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 99, 85, 67} 

136 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 92, 114, 117} 

137 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 99, 101, 121, 104} 

138 {0, 1, 4, 10, 18, 23, 25} 7 {0, 1, 4, 10, 18, 23, 25, 79, 106, 53, 94, 7, 38, 65} 

139 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55} 10 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 74, 82, 101, 103} 

140 {0, 1, 4, 9, 15, 22, 32, 34} 8 {0, 1, 4, 9, 15, 22, 32, 34, 42, 58, 71, 94, 96, 109} 



141 {0, 1, 4, 10, 18, 23, 25} 7 {0, 1, 4, 10, 18, 23, 25, 89, 61, 101, 34, 69, 49, 47} 

142 {0, 1, 4, 9, 15, 22, 32, 34} 8 {0, 1, 4, 9, 15, 22, 32, 34, 86, 113, 77, 93, 46, 116} 

 

 The order 10 optimal ruler found 273 distinct covers of length 15 in modulo 143 and 

continued to find such covers until finding a single length 15 cover in modulo 155. After 

that, the effectiveness of the order 10 ruler is again lost, and the runtime became too high 

for me to proceed with brute force searches with smaller covers at that point. Starting with 

modulo 130, where I started finding order 14 covers, these covers may very well not be 

minimum but they are the smallest known covers for their modulo. For Modulo 143, I 

have found covers of order 15 but not 14. I have no means of proving or disproving the 

existence of smaller covers. At the very least however, these are unlikely to be more than 1 

element above the true minimum covers. 

Table 4.2 

 Order 15 difference covers obtained from the order 10 optimal Golomb ruler. 

Modulo Cover 

143 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 93, 92, 101, 117, 73} 

144 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 106, 108, 94, 81, 67} 

145 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 109, 107, 88, 95, 14} 

146 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 110, 108, 96, 81, 13} 

147 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 111, 109, 67, 75} 

148 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 89, 72, 16, 84} 

149 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 111, 92, 113, 84, 11} 

150 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 112, 76, 104, 83, 141} 

151 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 101, 97, 92, 12} 

152 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 92, 99, 111, 127} 

153 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 115, 92, 117, 91, 79} 

154 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 118, 97, 116, 104} 

155 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 117, 91, 101, 92} 

 

 There were a few cases in which I gave up on certain rulers before moving on to the 

next smaller ruler. While I did complete brute force searches starting with the order 10 

ruler for each of these modulo, modulo 141 happened to find a minimum difference cover 

quickly the length 7 ruler while it took too long with the length 8 ruler for me to continue 

the search. It appears based on this evidence that certain covers work well at certain 

modulo and will work over a scattered list of modulo as opposed to a sequential list. The 

order 10 ruler for example fails to find a cover for what appears to be a random subset of 



modulo groups on the interval where it otherwise works. This could be explained by the 

way the nature of subtraction changes at each modulo, causing the same ruler to cover a 

different set of differences for different modulo groups. This way, any given ruler may 

only be useful for a subset of modulo that appears to be random, although there is likely a 

discernable pattern dictating where rulers will be part of minimum covers. I have not been 

able to determine any such pattern. 

While compiling a database of difference covers for each modulo group, I observed 

that for the most part the size of minimum covers increased gradually as the order of the 

group increased. There were however a few specific exceptions. For every integer n greater 

than 1, the modulo group of order 𝑛(𝑛 − 1) + 1 may have covers with n elements that are 

also difference packings and sets, i.e. no differences will overlap. In each of these cases, the 

length of these covers is less than the lengths of the covers of the modulo groups adjacent 

to them. These modulo groups are exceptions to the general trend of minimum difference 

covers increasing in order as the order of the group increases. 

Table 4.3 

 The overlap of difference covers, sets and packings. 

Order Modulo Maximum Packing 

2 3 {0, 1} 

3 7 {0, 1, 3} 

4 13 {0, 1, 4, 6} 

5 21 {0, 1, 4, 14, 16} 

6 31 {0, 1, 4, 10, 12, 17} 

7 43 None 

8 57 {0, 1, 6,  21, 28, 44, 46, 54} 

9 73 {0, 1, 12, 20, 26, 30, 33, 35, 57} 

10 91 {0, 1, 5, 7,  27, 35, 44, 67, 77, 80} 

11 111 None 

12 133 {0, 1, 8, 10, 32,  36, 52, 55, 66, 95, 116, 128} 

 

 Looking into difference sets, I found that these particular constructions were 

already well known. Singer’s construction of Singer difference sets prove that for any 

prime power q, at least one (𝑞2 + 𝑞 + 1, 𝑞 + 1, 1)-difference set exists. These are difference 

sets for modulo 𝑞2 + 𝑞 + 1 with 𝑞 + 1 elements and each difference repeating once. This 

accounts for each of these packings and confirms that they will continue to be found at 



higher modulo. These can be found much faster than difference covers at other modulo 

since the search space includes only subsets of the modulo group that have no overlapping 

differences. There are some orders, like 43 and 111, where even though they are 𝑛(𝑛 − 1) +

1 for a certain n, they do not have any Singer difference sets. Even though the math 

suggests they could, these modulo do not have difference covers that are also packings [6]. 

 The only other discrepancy I found in minimum difference cover sizes was at 

modulo 39, which has length 7 minimum difference covers despite modulo 38 having 

length 8 minimum covers. This is not a modulo group in which difference covers can also 

be packings, so the Singer construction does not explain this phenomenon. This anomaly 

emphasizes the notion that the true smallest minimum difference cover cannot be known 

with complete certainty until the entire search space is searched. This means for larger 

modulo where complete searches cannot be carried out, covers that are suspected to be 

minimum, or at least the smallest that can be found, will have to suffice. More of these 

anomalies are likely to exist but will require extensive brute force searches to discover. 

They may also be an explanation for this that I am unaware of, but these covers are not 

difference packings or sets, so constructions for those do not explain this. If there are other 

modulo groups with covers like this, I suspect that a construction can be built to find 

others like it. 

Alan Ling believed that for larger modulo, the search for minimum difference 

covers would be greatly speed up using these rulers. However, I was able to use 

backtracking searches to show that for the optimal Rulers of order 7 and up, minimum 

covers for modulo 256 and 512 are not found. I was able to find covers of order 19 for 

modulo 256, which are 1 element smaller than the cover previously found. I was not able 

to find covers for 512 that were smaller than the previously found 28 order covers. I 

believe that there likely exists order 17 or 18 difference covers for modulo 256 and order 25 

or 26 difference covers for 512. Golomb rulers were unfortunately not an effective enough 

strategy to achieve results that effective at modulo this large. For modulo 256, the order 19 

covers are still an improvement, however small, upon existing covers. See Appendix B for 

a list of some of the order 19 covers found for this group. 

 



4.2 Difference Packings with Backtracking 

 Difference packings are similar enough in nature to difference covers that the same 

methods can easily be applied. A simple backtracking algorithm that avoids repeated 

differences can find difference packings much more efficiently that it can covers. Choosing 

the order of elements to search stochastically appears to work well. I am not sure whether 

this exists a pattern that would allow certain elements to be valued more highly than 

others as I can do in difference cover searched. Certain patterns do appear to crop up in 

difference packings like the sequence {0, 1, 3, 7} which is an order four Golomb ruler. It is 

not an optimal ruler however as {0, 1, 4, 6} is more efficient. The packings do generally 

resemble Golomb rulers, as would be expected, but I have not been able to find known 

optimal Golomb rulers of order greater than four actually appearing within the packings I 

have found. Based on the packings I have found, I believe that it is not feasible to speed up 

the search for packings by using Golomb rulers as a starting point. This is because there is 

a sufficient enough variation in the way differences are distributed in larger packings that 

the optimal Golomb rulers do not appear within them. 

Table 4.4 

 Difference packings obtained with backtracking. 

Modulo Packing 

128 {0, 1, 3, 7, 12, 20, 30, 44, 78, 93} 

129 {0, 1, 3, 7, 12, 20, 30, 45, 69, 95} 

130 {0, 1, 3, 7, 12, 20, 30, 46, 78, 93} 

131 {0, 1, 3, 7, 12, 20, 30, 44, 70, 86} 

132 {0, 1, 3, 7, 12, 20, 30, 44, 65, 93} 

133 {0, 1, 3, 7, 12, 20, 30, 44, 69, 100} 

134 {0, 1, 3, 7, 12, 20, 30, 44, 65, 80} 

135 {0, 1, 3, 7, 23, 35, 49, 73, 78, 117, 125} 

136 {0, 1, 3, 7, 26, 35, 43, 55, 65, 76, 92} 

137 {0, 1, 3, 7, 12, 43, 60, 73, 93, 112, 122} 

138 {0, 1, 3, 7, 19, 65, 86, 91, 106, 114, 128} 

139 {0, 1, 3, 7, 12, 29, 39, 62, 86, 105, 126} 

140 {0, 1, 3, 7, 12, 27, 44, 58, 80, 93, 122} 

 

 

 

 



4.3 Direct Products 

 Another question I wanted to explore was whether I could learn anything from 

covers of smaller groups to help me find covers of larger ones. Because the nature of 

subtraction changes with each order in modulo groups, intuition dictates that this should 

not be the case. This did not stop me from looking for patterns that might emerge in a 

large list of covers. This led me to looking into the direct product of modular groups. Since 

there is an isomorphism between the product of two relatively prime modulo groups and 

the group whose order is the product of their orders, this means certain modulo groups 

can be expressed in different ways. For example, difference covers in modulo 66 can be 

viewed as corresponding difference covers in modulo 6 x modulo 11. By looking through 

the direct product representation of known covers I hoped to find patterns emerge and 

find a way to narrow down my search. 

 Looking through known minimum difference covers for modulo that can be 

converted to a direct product, patterns did appear to emerge. Every element in the larger 

modulo would usually appear only once and in the smaller modulo the elements would 

likewise be very spread out. This pattern gives me a more powerful metric to use in tree 

searches for specific modulo. For example, for modulo 138 (6 x 23), I can assign a value to 

nodes in a tree search not just on the number of repeated differences, but on how well 

spread out the values are among both modulo. This means a subset with three elements 

whose modulo 6 coordinates are 1, 2 and 3 would be much more interesting than a subset 

with elements whose modulo 6 coordinates are 5, 5 and 5, since the latter seems unlikely 

to produce good results. This is relevant since both subsets in question could have the 

same number of repeated differences in modulo 138 thus being valued equally by the 

usual metric. 

 To demonstrate the existence of this pattern, I analyzed the complete list of 

minimum covers in modulo 66. I had obtained this list from a brute force search that lasted 

roughly an hour. .This modulo was chosen not only for convenience, since it is 6 x 11, but 

since this modulo group has 153,578 minimum covers, giving me an enormous sample. I 

am not aware of another modulo group with a similar magnitude of minimum covers 

though I suspect larger modulo where the order of minimum covers ticks up will have 



similarly long lists of covers. I converted the elements of each cover to points in modulo 6 

x modulo 11 to verify that the coordinates of the elements in each cover were in fact 

relatively spread out among their respective modulo. 

 Out of the minimal covers in modulo 6 x modulo 11, each element of modulo 6 

appears at least once in 39,026 of them. 5 elements of modulo 6 appear in another 102,153 

of them and the remaining 12,399 covers contain 4 elements in modulo 6. Not a single 

cover contains only 3 or fewer elements of modulo 6. For modulo 11, the numbers were 

more spread out but were similarly skewed towards a large representation of the set with 

92,442 elements containing 7 elements of the modulo and none containing 3 or fewer 

elements. These covers only have ten elements so the entirety of modulo 11 could not be 

represented. This implies that, when searching modulo 66, we could theoretically round 

off paths that lead to too many modulo 6 coordinates being repeated since three repeats 

would eliminate the chance of a cover and even two repeats make it relatively unlikely. 

 If we extend this concept to a larger modulo group, say modulo 6 x modulo 19, we 

could value nodes in a tree based on the number of repeated differences in modulo 114 as 

well as whether the modulo 6 and modulo 11 coordinates of the new element are already 

represented. This would result in a less naïve tree search that could be more effective for 

finding a single cover for a given order and modulo. 

 This observation resulted in a theoretically increase in the speed of tree searches for 

certain modulo, however this observation is only useful for specific modulo groups. 

Furthermore, it is only useful for larger modulo groups beyond 128 where it is normally 

difficult to find covers. This method of finding covers however is not nearly as efficient as 

simulated annealing, as detailed in the next section. Because of this, the use of direct 

products unfortunately serves no practical purpose unless a better way to utilize them is 

found. Because this is essentially just a way of rewriting the same problem, this is unlikely. 

I was hoping that exploring this would lead me somewhere useful and perhaps it did give 

me some insight into the nature of difference covers, but it regrettably lead me to no direct 

results. 

 

 



4.4 Simulated Annealing 

 My results with simulated annealing were much more promising than I expected 

and made me more hopeful than I am about Golomb rulers, moving forward into high 

modulo groups. With linear and exponential cooling I was able to find order 13 minimum 

difference covers from modulo 114 to 129 fairly quickly, which demonstrates potential 

with this method since this significantly improves upon greedy tree searches and 

compares well to the use of Golomb rulers. 

Table 4.5 

 Minimum covers found while testing simulated annealing with linear and 

exponential cooling schedules. 

Cooling Schedule Modulo Difference Cover 

Exponential 114 {0, 1, 59, 43, 32, 70, 107, 19, 112, 55, 84, 9, 90} 

Exponential 115 {0, 1, 95, 33, 39, 67, 56, 25, 83, 76, 93, 85, 80} 

Exponential 116 {0, 1, 69, 103, 59, 32, 26, 87, 47, 50, 67, 110, 5} 

Exponential 117 {0, 1, 37, 26, 66, 23, 16, 10, 42, 8, 87, 105, 70} 

Exponential 118 {0, 1, 109, 80, 21, 64, 61, 69, 97, 95, 18, 86, 14} 

Exponential 119 {0, 1, 43, 36, 57, 61, 89, 81, 17, 70, 84, 55, 33} 

Exponential 120 {0, 1, 22, 57, 115, 27, 77, 10, 73, 113, 61, 102, 24} 

Exponential 121 {0, 1, 12, 51, 45, 103, 90, 49, 73, 78, 87, 66, 113} 

Exponential 122 {0, 1, 42, 46, 97, 59, 73, 112, 61, 80, 115, 103, 75} 

Exponential 123 {0, 1, 43, 73, 58, 77, 13, 75, 82, 118, 102, 113, 110} 

Exponential 124 {0, 1, 80, 62, 32, 12, 103, 36, 26, 70, 65, 28, 19} 

Exponential 125 {0, 1, 28, 20, 38, 59, 35, 68, 113, 117, 6, 61, 17} 

Exponential 126 {0, 1, 63, 94, 35, 77, 53, 83, 37, 28, 98, 40, 75} 

Exponential 127 {0, 1, 101, 6, 125, 17, 79, 21, 40, 77, 70, 115, 42} 

Exponential 128 {0, 1, 96, 47, 126, 115, 109, 101, 85, 87, 37, 32, 103} 

Exponential 129 {0, 1, 39, 35, 73, 63, 30, 12, 14, 123, 83, 31, 9} 

Linear 114 {0, 1, 109, 105, 21, 73, 40, 23, 37, 80, 22, 61, 48} 

Linear 115 {0, 1, 73, 16, 83, 33, 32, 54, 24, 15, 35, 28, 79} 

Linear 116 {0, 1, 89, 107, 9, 85, 47, 114, 64, 14, 20, 35, 59} 

Linear 117 {0, 1, 48, 29, 25, 108, 100, 44, 55, 5, 42, 32, 65} 

Linear 118 {0, 1, 97, 56, 9, 50, 100, 40, 93, 52, 29, 14, 73} 

Linear 119 {0, 1, 102, 29, 17, 59, 8, 66, 14, 64, 92, 44, 40} 

Linear 120 {0, 1, 49, 116, 65, 30, 107, 84, 80, 110, 82, 60, 8} 

Linear 121 {0, 1, 6, 85, 99, 33, 51, 21, 41, 109, 60, 4, 116} 

Linear 122 {0, 1, 13, 22, 6, 103, 36, 51, 24, 100, 118, 69, 61} 

Linear 123 {0, 1, 32, 45, 90, 15, 39, 98, 36, 43, 88, 61, 20} 

Linear 124 {0, 1, 46, 49, 79, 50, 71, 32, 86, 55, 114, 112, 52} 

Linear 125 {0, 1, 117, 94, 75, 70, 16, 37, 123, 12, 104, 42, 77} 

Linear 126 {0, 1, 12, 63, 69, 119, 72, 115, 112, 34, 10, 99, 94} 

Linear 127 {0, 1, 92, 55, 6, 63, 25, 106, 13, 53, 124, 107, 24} 



Linear 128 {0, 1, 123, 121, 61, 85, 96, 19, 64, 113, 73, 15, 32} 

Linear 129 {0, 1, 96, 47, 126, 115, 109, 101, 85, 87, 37, 32, 103} 

 

 With both strategies, the amounts of time required to find a cover vary significantly, 

due to the random nature of the process. Both of these cooling methods are fast, generally 

taking less than 15 minutes, up until around modulo 124. By the time modulo 129 is 

reached however, it already takes around an hour or two. The times for both of these 

cooling schedules are comparable to each other and to Golomb rulers. With both cooling 

methods, I began with a temperature of 30 and reset the temperature every time it reached 

0.001. At larger modulo, I increased the starting temperature to around 50 which appeared 

to help. I suspect based on my observations that the initial temperature wants to increase 

with an increase in modulo, if only to allow the system more room to move around a 

larger search space. With linear cooling, n = 0.01 worked well and with exponential 

cooling, α = 0.99992 to 0.99994 worked better than other values I tried. Values closer to 0.99 

are clearly too fast and result in very high average energy. I believe the value of α should 

become closer to 1 as the order of the covers increases since the cooling needs to be done 

slower. Likewise, for linear cooling, n wants to slowly approach 0. Exponential worked 

much better than linear at higher modulo however, and found me a few possibly 

minimum covers much farther out when I looked to continue where difference covers had 

left off. 

Table 4.6 

 Covers found with an exponential cooling schedule at higher order modulo groups. 

Modulo Difference Cover 

153 {0, 1, 17, 25, 95, 15, 101, 41, 61, 104, 83, 106, 74, 102, 139} 

154 {0, 1, 133, 33, 4, 22, 153, 105, 62, 68, 74, 17, 98, 18, 145} 

155 {0, 1, 38, 7, 16, 74, 50, 130, 99, 103, 61, 69, 116, 71, 51} 

156 {0, 1, 48, 119, 8, 33, 2, 56, 73, 61, 67, 26, 155, 77, 13} 

157 {0, 1, 123, 133, 137, 77, 5, 100, 27, 79, 9, 8, 154, 117, 64} 

158 {0, 1, 71, 4, 99, 69, 112, 38, 51, 144, 80, 104, 87, 77, 48} 

159 {0, 1, 87, 153, 39, 100, 43, 97, 151, 76, 128, 17, 147, 9, 133} 

160 {0, 1, 28, 108, 19, 139, 113, 80, 131, 39, 73, 3, 97, 13, 117} 

161 {0, 1, 140, 115, 50, 36, 108, 131, 142, 7, 123, 120, 149, 64, 40} 

162 {0, 1, 106, 14, 52, 85, 147, 128, 32, 157, 5, 98, 2, 25, 119, 161} 

163 {0, 1, 3, 98, 149, 63, 89, 159, 117, 37, 104, 119, 11, 25, 116, 143} 

164 {0, 1, 77, 27, 58, 82, 54, 150, 66, 95, 140, 65, 83, 98, 36, 34} 



165 {0, 1, 20, 32, 60, 15, 83, 110, 163, 93, 7, 44, 33, 131, 67, 2} 

166 {0, 1, 124, 48, 139, 4, 149, 136, 26, 72, 69, 67, 107, 62, 155, 116} 

167 {0, 1, 124, 63, 150, 3, 103, 117, 82, 69, 140, 95, 91, 165, 14, 39} 

168 {0, 1, 117, 74, 78, 73, 44, 100, 80, 33, 151, 103, 54, 86, 109, 16} 

169 {0, 1, 157, 105, 23, 29, 72, 21, 5, 130, 71, 94, 113, 160, 120, 74} 

170 {0, 1, 134, 56, 165, 79, 18, 68, 81, 95, 143, 35, 52, 42, 3, 153} 

171 {0, 1, 37, 116, 48, 25, 57, 98, 81, 168, 12, 86, 106, 132, 79, 100} 

172 {0, 1, 157, 49, 164, 78, 55, 88, 30, 28, 89, 120, 73, 4, 140, 14} 

173 {0, 1, 30, 107, 12, 79, 120, 137, 104, 110, 131, 88, 135, 74, 114, 165} 

 

 Even though these covers cannot be proven to be minimum, based on every 

minimum cover that is known and the rate at which minimum covers increase, these are 

not only almost certainly minimum, I am even surprised that it was possible to get as high 

as modulo 161 with 15 elements. I proceeded to find order 16 covers for modulo 162 to 

173. The runtime increased significantly each time the length of the cover increased. This 

can be explained by the size of the search space being (𝑣−3
𝑠−2

). Increasing the value of v and 

s, with 𝑠 − 2 <
𝑣−3

2
, and v increasing more quickly than s, will scale the search space 

upwards dramatically. Finding order 15 covers took a few hours each but order 16 covers 

took around twenty four hours with the same machine with exponential cooling. 

Continuing to use simulated annealing for larger modulo groups will require a much 

more efficient algorithm or significantly more processing power than I have had. 

 Constant thermodynamic speed took a while for me to perfect since there were 

constants that I was merely guessing the appropriate values of. Eventually I got the 

algorithm performing well with a maximum temperature of 40 and a minimum 

temperature of 0.05. These numbers were arrived at partially from trial and error, as well 

as estimating the minimum temperature at which the probability of moving to another 

state is sufficiently low and a temperature at which the system effectively moves in an 

entirely stochastic way. I found that starting temperatures 𝑇 > 100 caused problems 

where the temperature would accelerate downwards too quickly. Additionally, a 

minimum temperature 𝑇 < 0.01 can result in too much time being spent trapped in a 

single state while the temperature asymptotically approaches its minimum value. The 

cooling schedule I used ended up being defined by 
𝑑𝑇

𝑑𝑡
=

−0.002𝑇3

𝐸(𝑠−1)
 where the constant 



velocity was determined with trial and error, keeping track of average energy values with 

each constant I tried. As soon as I started finding results, I had no reason to change this 

constant and found every cover in the table below with the same constant. This cooling 

schedule found many different covers for the same modulo and cover lengths as had been 

found by previously used cooling schedules as well as covers I had not been able to find 

using any other method. 

Table 4.7 

 Difference covers found with constant thermodynamic speed. In bold, covers that I 

had not been able to find previously. Some of these covers are for modulo in which I had 

found covers using previous methods but ones that were an order larger. 

Modulo Difference Cover 

129 {0, 1, 26, 45, 42, 13, 101, 112, 64, 40, 95, 122, 49} 

130 {0, 1, 35, 7, 12, 82, 48, 20, 72, 3, 87, 108, 34, 18} 

131 {0, 1, 78, 112, 50, 52, 116, 5, 34, 123, 109, 10, 40, 95} 

132 {0, 1, 16, 113, 43, 78, 40, 100, 108, 37, 26, 49, 44, 47} 

134 {0, 1, 122, 49, 116, 29, 65, 32, 95, 25, 42, 121, 100, 40} 

135 {0, 1, 52, 108, 48, 13, 128, 117, 14, 72, 46, 23, 91, 133} 

136 {0, 1, 81, 79, 112, 118, 77, 68, 51, 43, 130, 48, 91, 16} 

137 {0, 1, 80, 119, 109, 95, 36, 112, 27, 103, 124, 47, 134, 38}  

138 {0, 1, 78, 57, 91, 23, 99, 85, 19, 42, 94, 74, 109, 111} 

139 {0, 1, 23, 7, 83, 95, 136, 92, 19, 43, 78, 131, 108, 129} 

140 {0, 1, 87, 115, 130, 57, 128, 25, 60, 17, 82, 134, 39, 121} 

141 {0, 1, 32, 95, 75, 108, 22, 113, 26, 24, 59, 15, 101, 56} 

142 {0, 1, 107, 79, 18, 104, 32, 28, 42, 113, 97, 20, 53, 5} 

143 {0, 1, 93, 31, 67, 85, 22, 141, 3, 44, 10, 15, 42, 38} 

144 {0, 1, 84, 32, 111, 7, 121, 57, 56, 86, 10, 100, 20, 82, 15} 

145 {0, 1, 102, 82, 128, 120, 45, 126, 66, 34, 31, 40, 30, 59, 18} 

146 {0, 1, 61, 131, 2, 60, 54, 6, 28, 42, 73, 137, 84, 81, 35} 

147 {0, 1, 131, 24, 30, 96, 18, 28, 97, 70, 147, 95, 136, 75, 88} 

148 {0, 1, 110, 93, 142, 63, 48, 51, 129, 3, 124, 77, 114, 40, 44} 

149 {0, 1, 125, 72, 43, 132, 95, 101, 55, 40, 123, 35, 88, 76, 139} 

150 {0, 1, 131, 24, 30, 96, 18, 28, 97, 70, 147, 95, 136, 75, 88} 

151 {0, 1, 57, 37, 83, 110, 67, 116, 71, 48, 22, 35, 17, 148, 144} 

152 {0, 1, 138, 75, 49, 21, 13, 3, 97, 115, 148, 30, 91, 32, 113} 

153 {0, 1, 88, 115, 94, 101, 82, 34, 9, 132, 32, 72, 37, 112, 86} 

154 {0, 1, 23, 47, 136, 148, 85, 112, 81, 44, 92, 77, 138, 33, 72} 

155 {0, 1, 151, 75, 70, 143, 91, 21, 17, 3, 137, 125, 128, 59, 115} 

156 {0, 1, 3, 91, 73, 155, 122, 34, 121, 44, 60, 66, 20, 148, 15} 

157 {0, 1, 13, 109, 78, 40, 23, 42, 123, 46, 98, 86, 152, 16, 69} 



158 {0, 1, 24, 135, 18, 56, 61, 72, 123, 22, 149, 138, 136, 86, 130} 

159 {0, 1, 80, 42, 17, 84, 110, 144, 3, 123, 10, 115, 33, 132, 104} 

160 {0, 1, 158, 58, 41, 88, 134, 81, 121, 146, 152, 140, 156, 30, 104} 

161 {0, 1, 44, 89, 159, 155, 132, 84, 52, 114, 20, 148, 99, 61, 120} 

162 {0, 1, 151, 53, 108, 48, 16, 127, 66, 56, 129, 133, 94, 33, 120} 

163 {0, 1, 143, 41, 156, 158, 114, 28, 96, 16, 153, 100, 134, 65, 82} 

164 {0, 1, 14, 11, 114, 124, 97, 117, 71, 140, 4, 136, 91, 5, 35, 99} 

165 {0, 1, 161, 44, 61, 17, 131, 106, 120, 133, 91, 125, 54, 23, 35, 41} 

166 {0, 1, 97, 52, 139, 144, 69, 83, 19, 49, 148, 8, 3, 59, 13, 112} 

167 {0, 1, 152, 20, 22, 140, 88, 41, 155, 127, 110, 163, 34, 96, 158, 85} 

168 {0, 1, 71, 115, 155, 73, 81, 64, 133, 26, 15, 28, 101, 109, 104, 85} 

169 {0, 1, 159, 60, 118, 45, 72, 155, 50, 61, 71, 37, 54, 90, 93, 92} 

170 {0, 1, 152, 52, 82, 146, 109, 139, 96, 23, 105, 154, 12, 61, 2, 151} 

171 {0, 1, 145, 16, 50, 134, 124, 166, 13, 141, 120, 41, 19, 39, 112, 77} 

172 {0, 1, 10, 96, 82, 94, 35, 140, 11, 30, 8, 71, 26, 65, 21, 145} 

173 {0, 1, 165, 95, 53, 160, 72, 158, 83, 100, 18, 93, 24, 49, 141, 138} 

174 {0, 1, 114, 153, 129, 23, 101, 30, 32, 110, 12, 15, 148, 67, 116, 164} 

175 {0, 1, 156, 40, 11, 129, 152, 55, 42, 168, 143, 128, 37, 77, 105, 122} 

176 {0, 1, 149, 13, 115, 14, 170, 67, 6, 69, 135, 105, 17, 45, 164, 106} 

177 {0, 1, 116, 27, 91, 123, 163, 128, 17, 129, 152, 8, 19, 31, 70, 28} 

178 {0, 1, 13, 42, 174, 131, 96, 141, 163, 173, 110, 24, 129, 21, 51, 89} 

179 {0, 1, 48, 145, 46, 72, 153, 176, 16, 155, 64, 7, 101, 167, 59, 84} 

180 {0, 1, 91, 120, 6, 117, 105, 92, 140, 162, 179, 37, 170, 33, 104, 161} 

181 {0, 1, 58, 68, 126, 120, 112, 131, 110, 86, 9, 83, 55, 170, 143, 90} 

182 {0, 1, 86, 13, 181, 44, 128, 124, 69, 9, 74, 40, 20, 92, 102, 77} 

 

 To my amazement, many of the covers above were found in less than ten seconds, a 

speed that I did not believe possible at modulo this large. This algorithm failed to find a 

minimum cover for modulo 133, one of the few groups where the minimum cover is also a 

packing, but this is a modulo whose covers can be much more easily found with a tree 

search anyway. To put these results into perspective, each of the above covers were found 

on the same day after I had spent months finding a similar set of covers. This cooling 

method even gave me results further than the covers I had previously found for modulo 

173. It also managed to find order 15 covers for modulo groups 162 and 163. 162 was 

previously the first modulo at which I increased the order of covers I was searching for to 

16 since I could not find an order 15 cover for the group. Likewise, an order 14 cover for 

modulo 143 was found. Around modulo 180, covers were still being found in a matter of 

minutes. At modulo 183 however, no results were found even after several hours 



suggesting that this might be the next point where the order of the minimum difference 

cover increases or perhaps the runtime is simply taking off at this point. 

 Simulated annealing does not appear to be well suited for finding difference 

packings. Modulo 133 was the only instance on this range where annealing failed. This can 

be explained by the decreased density of solutions since packings are more specific in 

nature. The more differences overlap in a cover for a given modulo v and order s, the 

larger the number of covers there is expected to be since those repeated differences 

represent room for error. Without that, packings likely occupy a smaller portion of their 

search space. I suggest backtracking be used to find these packings instead. 

5 Observations and Future Work 

 It appears that at larger order modulo groups, the magnitude of the search space 

results in tools like Golomb rulers becoming less effective since there is increasingly more 

room for minimum covers that would not resemble a Golomb ruler. Because of this, I have 

little faith in the ability of Golomb rulers to continue to be effective into larger modulo 

groups.  For modulo 256, Golomb rulers were able to find an order 19 length cover but the 

optimal cover for this modulo should be about 15. For modulo 512, the optimal cover 

should be about order 24, whereas Golomb rulers only found order 28 covers. I am not 

convinced that Golomb rulers have the potentially to find covers closer to minimum for 

groups this large. 

 Simulated annealing seems promising for going into higher modulo with a robust 

enough cooling schedule and access to as many processors as possible. Simulated 

annealing with a constant thermodynamic speed is the best cooling schedule for tackling 

this problem that I am aware of. A more refined version of the algorithm than mine needs 

to be implemented. I believe this method will be capable of finding significantly more 

covers than it found for me. I would not be surprised if near minimum covers up to 

modulo 256 were mapped out using this idea. 
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6 Appendix A 

Below is a list of known list of a known minimum difference cover for modulo 

groups up to 128 for future reference. These covers were all found by me. 

Modulo Example of Minimum Difference Cover 

1 {0} 

2 {0, 1} 

3 {0, 1} 

4 {0, 1, 3} 

5 {0, 1, 3} 

6 {0, 1, 3} 

7 {0, 1, 3} 

8 {0, 1, 3, 4} 

9 {0, 1, 3, 4} 

10 {0, 1, 3, 5} 

11 {0, 1, 3, 7} 

12 {0, 1, 3, 7} 

13 {0, 1, 5, 11} 

14 {0, 1, 3, 10, 11} 

15 {0, 1, 7, 12, 3} 

16 {0, 1, 8, 11, 13} 

17 {0, 1, 8, 12, 3} 

18 {0, 1, 9, 13, 16} 

19 {0, 1, 9, 15, 3} 

20 {0, 1, 10, 14, 6, 3} 

21 {0, 1, 8, 18, 6} 

22 {0, 1, 11, 16, 14, 4} 

23 {0, 1, 11, 16, 7, 3} 

24 {0, 1, 12, 17, 15, 11} 

25 {0, 1, 12, 18, 21, 3} 

26 {0, 1, 13, 19, 22, 11} 

27 {0, 1, 13, 19, 24, 17} 

28 {0, 1, 14, 9, 25, 7} 

29 {0, 1, 14, 21, 24, 18, 3} 

30 {0, 1, 15, 22, 5, 19, 7} 

31 {0, 1, 15, 22, 28, 20} 

32 {0, 1, 3, 7, 12, 17, 20} 

33 {0, 1, 3, 7, 12, 20, 30} 

34 {0, 1, 3, 7, 12, 20, 2} 

35 {0, 1, 3, 7, 12, 20, 17} 

36 {0, 1, 3, 7, 21, 26, 9} 

37 {0, 1, 3, 7, 12, 17, 25} 

38 {0, 1, 13, 20, 24, 29, 32, 34} 



39 {0, 1, 19, 30, 25, 23, 27} 

40 {0, 1, 20, 29, 14, 24, 22, 3} 

41 {0, 1, 20, 30, 14, 37, 33, 16} 

42 {0, 1, 8, 18, 21, 16, 22, 31} 

43 {0, 1, 10, 12, 15, 37, 14, 18} 

44 {0, 1, 3, 7, 12, 20, 30, 23} 

45 {0, 1, 5, 7, 27, 10, 31, 39} 

46 {0, 1, 3, 7, 12, 22, 30, 33} 

47 {0, 1, 3, 7, 12, 20, 22, 36} 

48 {0, 1, 3, 7, 19, 24, 9, 35} 

49 {0, 1, 3, 7, 12, 20, 34, 24} 

50 {0, 1, 3, 8, 17, 28, 32, 38} 

51 {0, 1, 3, 13, 17, 22, 28, 21} 

52 {0, 1, 3, 7, 12, 20, 30, 38, 36} 

53 {0, 1, 27, 14, 38, 45, 33, 10, 3} 

54 {0, 1, 3, 7, 12, 20, 30, 33, 16} 

55 {0, 1, 27, 40, 18, 8, 51, 21, 10} 

56 {0, 1, 3, 7, 12, 20, 30, 34, 16} 

57 {0, 1, 28, 44, 21, 6, 54, 46} 

58 {0, 1, 3, 7, 12, 20, 30, 44, 36} 

59 {0, 1, 3, 7, 12, 22, 30, 46, 29} 

60 {0, 1, 3, 7, 12, 28, 29, 42, 52} 

61 {0, 1, 3, 7, 12, 20, 30, 36, 22} 

62 {0, 1, 3, 8, 20, 30, 34, 9, 47} 

63 {0, 1, 3, 7, 17, 43, 58, 34, 45} 

64 {0, 1, 3, 8, 18, 34, 40, 53, 44} 

65 {0, 1, 3, 11, 15, 20, 36, 42, 29} 

66 {0, 1, 33, 49, 20, 11, 26, 28, 14, 62} 

67 {0, 1, 3, 7, 12, 20, 30, 46, 32, 15} 

68 {0, 1, 3, 7, 12, 20, 30, 54, 43, 53} 

69 {0, 1, 3, 7, 12, 20, 30, 48, 55, 32} 

70 {0, 1, 35, 52, 21, 12, 45, 29, 48, 50} 

71 {0, 1, 36, 19, 51, 60, 44, 38, 15, 41} 

72 {0, 1, 36, 54, 21, 45, 5, 43, 60, 46} 

73 {0, 1, 35, 53, 11, 65, 48, 7, 51} 

74 {0, 1, 37, 55, 22, 13, 30, 64, 61, 59} 

75 {0, 1, 38, 20, 54, 28, 31, 25, 40, 71} 

76 {0, 1, 38, 57, 17, 26, 30, 24, 35, 45} 

77 {0, 1, 39, 20, 55, 64, 8, 5, 37, 11} 

78 {0, 1, 39, 58, 15, 67, 71, 42, 48, 76} 

79 {0, 1, 40, 17, 65, 7, 35, 43, 67, 76} 

80 {0, 1, 40, 60, 23, 12, 50, 16, 15, 21, 34} 

81 {0, 1, 41, 21, 59, 70, 31, 46, 37, 48, 56} 

82 {0, 1, 41, 61, 24, 13, 51, 76, 8, 15, 12} 



83 {0, 1, 42, 22, 60, 71, 32, 75, 78, 57, 59} 

84 {0, 1, 42, 63, 24, 13, 33, 70, 68, 60, 66} 

85 {0, 1, 43, 22, 62, 73, 8, 47, 57, 40, 49} 

86 {0, 1, 43, 64, 25, 13, 53, 79, 70, 15, 82} 

87 {0, 1, 44, 23, 63, 12, 53, 60, 68, 82, 86} 

88 {0, 1, 44, 66, 25, 12, 58, 51, 60, 61, 40} 

89 {0, 1, 45, 23, 65, 76, 35, 19, 28, 68, 74} 

90 {0, 1, 45, 67, 26, 12, 84, 37, 28, 7, 87} 

91 {0, 1, 44, 67, 27, 80, 35, 7, 77, 5} 

92 {0, 1, 46, 69, 26, 58, 10, 18, 39, 41, 4} 

93 {0, 1, 47, 26, 74, 59, 9, 63, 87, 45, 4} 

94 {0, 1, 47, 70, 27, 14, 59, 77, 55, 61, 56, 37} 

95 {0, 1, 48, 25, 69, 82, 36, 16, 30, 38, 29, 79} 

96 {0, 1, 48, 72, 27, 14, 60, 80, 57, 79, 68, 62} 

97 {0, 1, 49, 25, 71, 84, 37, 56, 89, 45, 68, 39} 

98 {0, 1, 49, 73, 28, 15, 61, 90, 31, 51, 7, 94} 

99 {0, 1, 50, 26, 72, 85, 38, 9, 92, 81, 33, 3} 

100 {0, 1, 50, 75, 28, 15, 39, 84, 80, 57, 47, 45} 

101 {0, 1, 50, 75, 29, 16, 64, 94, 70, 84, 72, 33} 

102 {0, 1, 51, 76, 29, 16, 37, 69, 57, 60, 59, 5} 

103 {0, 1, 51, 76, 30, 16, 64, 95, 58, 54, 87, 56} 

104 {0, 1, 52, 77, 30, 16, 42, 97, 86, 80, 47, 84} 

105 {0, 1, 52, 78, 30, 16, 97, 72, 13, 11, 48, 23} 

106 {0, 1, 52, 78, 29, 16, 66, 74, 63, 87, 6, 105} 

107 {0, 1, 53, 79, 31, 18, 68, 45, 21, 12, 43, 5} 

108 {0, 1, 54, 80, 31, 15, 91, 99, 87, 29, 96, 35} 

109 {0, 1, 54, 81, 31, 14, 63, 11, 48, 36, 52, 55} 

110 {0, 1, 55, 82, 24, 35, 14, 85, 18, 23, 16, 88} 

111 {0, 1, 55, 82, 24, 96, 33, 61, 101, 99, 8, 59} 

112 {0, 1, 56, 82, 33, 20, 68, 72, 54, 71, 47, 76} 

113 {0, 1, 56, 86, 20, 69, 51, 54, 40, 44, 92, 77} 

114 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 76, 92, 91} 

115 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 79, 99, 48} 

116 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 80, 91, 113} 

117 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 101, 114, 89} 

118 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 82, 61, 105} 

119 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 83, 81, 69} 

120 {0, 1, 4, 9, 15, 22, 32, 34, 74, 58, 82, 45, 109} 

121 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 85, 83, 97} 

122 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 84, 86, 57} 

123 {0, 1, 4, 9, 15, 22, 32, 34, 87, 63, 89, 43, 16} 

124 {0, 1, 11, 16, 19, 23, 25, 76, 55, 97, 56, 114, 63} 

125 {0, 1, 11, 16, 19, 23, 25, 77, 57, 97, 36, 66, 99} 

126 {0, 1, 11, 16, 19, 23, 25, 79, 53, 96, 92, 52, 117} 



127 {0, 1, 8, 12, 14, 17, 69, 42, 106, 88, 62, 32, 92} 

128 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 90, 91, 92} 

 

These are examples of the smallest difference covers I found for modulo beyond 128. 

These were all found using either a Golomb ruler or simulated annealing. 

Modulo Example of Smallest Known Cover 

129 {0, 1, 5, 12, 20, 30, 44, 57, 66, 60, 108, 91, 106} 

130 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 94, 73, 66} 

131 {0, 1, 78, 112, 50, 52, 116, 5, 34, 123, 109, 10, 40, 95} 

132 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 99, 72, 118} 

133 {0, 1, 32, 42, 44, 48, 51, 59, 72, 77, 97, 111} 

134 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 97, 98, 73} 

135 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 99, 85, 67} 

136 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 92, 114, 117} 

137 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 99, 101, 121, 104} 

138 {0, 1, 4, 10, 18, 23, 25, 79, 106, 53, 94, 7, 38, 65} 

139 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 74, 82, 101, 103} 

140 {0, 1, 4, 9, 15, 22, 32, 34, 42, 58, 71, 94, 96, 109} 

141 {0, 1, 4, 10, 18, 23, 25, 89, 61, 101, 34, 69, 49, 47} 

142 {0, 1, 4, 9, 15, 22, 32, 34, 86, 113, 77, 93, 46, 116} 

143 {0, 1, 93, 31, 67, 85, 22, 141, 3, 44, 10, 15, 42, 38} 

144 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 106, 108, 94, 81, 67} 

145 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 109, 107, 88, 95, 14} 

146 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 110, 108, 96, 81, 13} 

147 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 111, 109, 67, 75} 

148 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 89, 72, 16, 84} 

149 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 111, 92, 113, 84, 11} 

150 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 112, 76, 104, 83, 141} 

151 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 101, 97, 92, 12} 

152 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 92, 99, 111, 127} 

153 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 115, 92, 117, 91, 79} 

154 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 92, 118, 97, 116, 104} 

155 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 97, 117, 91, 101, 92} 

156 {0, 1, 5, 12, 25, 27, 35, 41, 44, 105, 126, 89, 110, 138, 50} 

157 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 91, 121, 94, 135, 84} 

158 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55, 120, 122, 108, 101, 30} 

159 {0, 1, 4, 9, 15, 22, 32, 34, 99, 72, 119, 46, 135, 81, 52} 

160 {0, 1, 28, 108, 19, 139, 113, 80, 131, 39, 73, 3, 97, 13, 117} 

161 {0, 1, 140, 115, 50, 36, 108, 131, 142, 7, 123, 120, 149, 64, 40} 

162 {0, 1, 151, 53, 108, 48, 16, 127, 66, 56, 129, 133, 94, 33, 120} 

163 {0, 1, 143, 41, 156, 158, 114, 28, 96, 16, 153, 100, 134, 65, 82} 

164 {0, 1, 77, 27, 58, 82, 54, 150, 66, 95, 140, 65, 83, 98, 36, 34} 

165 {0, 1, 20, 32, 60, 15, 83, 110, 163, 93, 7, 44, 33, 131, 67, 2} 



166 {0, 1, 124, 48, 139, 4, 149, 136, 26, 72, 69, 67, 107, 62, 155, 116} 

167 {0, 1, 124, 63, 150, 3, 103, 117, 82, 69, 140, 95, 91, 165, 14, 39} 

168 {0, 1, 117, 74, 78, 73, 44, 100, 80, 33, 151, 103, 54, 86, 109, 16} 

169 {0, 1, 157, 105, 23, 29, 72, 21, 5, 130, 71, 94, 113, 160, 120, 74} 

170 {0, 1, 134, 56, 165, 79, 18, 68, 81, 95, 143, 35, 52, 42, 3, 153} 

171 {0, 1, 37, 116, 48, 25, 57, 98, 81, 168, 12, 86, 106, 132, 79, 100} 

172 {0, 1, 157, 49, 164, 78, 55, 88, 30, 28, 89, 120, 73, 4, 140, 14} 

173 {0, 1, 30, 107, 12, 79, 120, 137, 104, 110, 131, 88, 135, 74, 114, 165} 

174 {0, 1, 114, 153, 129, 23, 101, 30, 32, 110, 12, 15, 148, 67, 116, 164} 

175 {0, 1, 156, 40, 11, 129, 152, 55, 42, 168, 143, 128, 37, 77, 105, 122} 

176 {0, 1, 149, 13, 115, 14, 170, 67, 6, 69, 135, 105, 17, 45, 164, 106} 

177 {0, 1, 116, 27, 91, 123, 163, 128, 17, 129, 152, 8, 19, 31, 70, 28} 

178 {0, 1, 13, 42, 174, 131, 96, 141, 163, 173, 110, 24, 129, 21, 51, 89} 

179 {0, 1, 48, 145, 46, 72, 153, 176, 16, 155, 64, 7, 101, 167, 59, 84} 

180 {0, 1, 91, 120, 6, 117, 105, 92, 140, 162, 179, 37, 170, 33, 104, 161} 

181 {0, 1, 58, 68, 126, 120, 112, 131, 110, 86, 9, 83, 55, 170, 143, 90} 

182 {0, 1, 86, 13, 181, 44, 128, 124, 69, 9, 74, 40, 20, 92, 102, 77} 

7 Appendix B 

Some of the smallest known covers for modulo 256 and 512. 

Modulo Ruler Used Cover 

256 {0, 4, 6, 20, 35, 52, 59, 77, 78, 86, 

89, 99, 122, 127} 

{0, 4, 6, 20, 35, 52, 59, 77, 78, 86, 89, 99, 122, 

127, 195, 200, 183, 189, 187} 

512 {0, 1, 6, 25, 32, 72, 100, 108, 120, 

130, 153, 169, 187, 190, 204, 

231, 233, 242, 246} 

{0, 1, 6, 25, 32, 72, 100, 108, 120, 130, 153, 169, 

187, 190, 204, 231, 233, 242, 246, 296, 427, 364, 

382, 373, 387, 413, 381, 467} 

 


